Документ подписан простой электронной подписью

Информация о владельце:

фио: высоцкая Татья **Министерс**тво науки и высшего образования Российской Федерации Дофедеральное ргосударственное бюджетное образовательное учреждение высшего образования Дата подписания: 27.0 Ростовский государственный экономический университет (РИНХ)» Уникальный программный ключ:

49ad56fe82cf536c4e0b05841d800326647338f0
Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Ростовский государственный экономический университет (РИНХ)» в г. Миллерово Ростовской области

УТВЕРЖДАЮ Директор филиала Т.А. Высоцкая «28» февраля 2025 г.

Рабочая программа дисциплины Основы алгоритмического мышления и программирования

Направление подготовки 38.03.01 Экономика

Направленность (профиль) программы бакалавриата 38.03.01.06 Бизнес-консалтинг и финансовый контроль

Для набора 2023 года

Квалификация Бакалавр УП: ozs38.03.01.06 cтр. 2

КАФЕДРА Общеэкономические и специальные дисциплины

Распределение часов дисциплины по семестрам / курсам

Семестр (<Курс>.<Семестр на курсе>)	6 (3.2)		Итого	
Недель	16			
Вид занятий	УП	РΠ	УП	РΠ
Лабораторные	8	8	8	8
Итого ауд.	8	8	8	8
Контактная работа	8	8	8	8
Сам. работа	96	96	96	96
Часы на контроль	4	4	4	4
Итого	108	108	108	108

ОСНОВАНИЕ

Учебный план утвержден учёным советом вуза от 28.02.2025 г. протокол № 9.

Рабочая программа составлена на основе рабочей программы указанной дисциплины, утвержденной в ФГБОУ ВО РГЭУ (РИНХ) с учетом условий реализации программы бакалавриата, действующих в филиале федерального государственного бюджетного образовательного учреждения высшего образования «Ростовский государственный экономический университет (РИНХ)» в г. Миллерово Ростовской области

Программу составил(и): к.ф-м.н., доцент, Т.В. Богачев;д.э.н., доцент, С.М. Щербаков

Зав. кафедрой: к.э.н., доцент Т.А. Высоцкая

УП: ozs38.03.01.06

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 получение представления об алгоритмизации и программировании на языке Python для решения профессиональных задач.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-6. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.

ОПК-5. Способен использовать современные информационные технологии и программные средства при решении профессиональных задач.

В результате освоения дисциплины обучающийся должен:

Знать:

алгоритмы обработки данных (соотнесено с индикатором ОПК-5.1) основы программирования (соотнесено с индикатором ОПК-6.1)

VMeth:

строить алгоритмы для решения прикладных задач (соотнесено с индикатором ОПК-5.2)

использовать информационные технологии для решения задач профессиональной деятельности (соотнесено с индикатором ОПК-6.2)

Владеть:

практическими навыками обработки данных для решения задач профессиональной деятельности (соотнесено с индикатором ОПК-5.3)

практическими навыками программирования при решении задач профессиональной деятельности (соотнесено с индикатором ОПК-6.3)

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Раздел 1. Основы алгоритмизации

Nº	Наименование темы, краткое содержание	Вид занятия / работы / форма ПА	Семестр / Курс	Количество часов	Компетенции
1.1	Лабораторная работа 1.1. Алгоритмы и структуры данных. Понятие алгоритма, программы. Переменные. Типы данных. Строки. Массивы. Ввод и вывод. Применение алгоритмического мышления к решению задач. Выполнение лабораторных заданий с использованием Python, Jupyter Notebook или Colab.	Лабораторные занятия	6	2	ОПК-6 ОПК-5
1.2	Лабораторная работа 1.2. Линейные, ветвящиеся и циклические алгоритмы. Линейные алгоритмы. Ветвления. Условия. Циклические алгоритмы. Виды циклов. Цикл по коллекции. Цикл по счетчику. Цикл с предусловием и постусловием. Обработка массивов. Выход из цикла. Выполнение лабораторных заданий с использованием Python, Jupyter Notebook или Colab.	Лабораторные занятия	6	2	ОПК-6 ОПК-5
1.3	Тема. Функции и рекурсивные алгоритмы. Понятие подпрограммы. Передача и возврат параметров. Локальные и глобальные переменные. Рекурсия.	Самостоятельная работа	6	20	ОПК-6 ОПК-5
1.4	Тема. Базы данных. Типы баз данных. Типы данных в базах данных. Связи в базах данных. Технология обработки данных в базах данных.	Самостоятельная работа	6	20	ОПК-6 ОПК-5

Раздел 2. Основы программирования на языке Python

№	Наименование темы, краткое содержание	Вид занятия / работы / форма ПА	Семестр / Курс	Количество часов	Компетенции
2.1	Лабораторная работа 2.1. Инструментарий разработки на языке Python. Ввод и вывод данных. Среда разработки. Системы управления кодом. Модули. Маth, NumPy. Выполнение лабораторных заданий с использованием Python, Jupyter Notebook или Colab.	Лабораторные занятия	6	2	ОПК-6 ОПК-5
2.2	Лабораторная работа 2.2. Работа со структурами данных Руthon. Списки. Кортежи. Словари. Преобразование данных. Срезы. Циклическая обработка списка. Генератор списка. Выполнение лабораторных заданий с использованием Python, Jupyter Notebook или Colab.	Лабораторные занятия	6	2	ОПК-6 ОПК-5

УП: ozs38.03.01.06 стр. 4

2.3	Тема. Основы объектно-ориентированного программирования в Python. Понятие объектно-ориентированного программирования. Класс. Объект. Инкапсуляция, наследование и полиморфизм в Python.	Самостоятельная работа	6	20	ОПК-6 ОПК-5
2.4	Тема. Python для решения аналитических задач. Библиотека Pandas, анализ и обработка данных. Визуализация в matplotlib и seaborn.	Самостоятельная работа	6	20	ОПК-6 ОПК-5
2.5	Тема. Основы web-разработки. Особенности web-разработки с использованием Python.	Самостоятельная работа	6	16	ОПК-6 ОПК-5
2.6	Подготовка к промежуточной аттестации	Зачет	6	4	ОПК-6 ОПК-5

4. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Структура и содержание фонда оценочных средств для проведения текущего контроля и промежуточной аттестации представлены в Приложении 1 к рабочей программе дисциплины.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ						
5.1. Учебные, научные и методические издания						
	Авторы, составители	Заглавие	Издательство, год	Библиотека / Количество		
1	Борисенко В. В.	Основы программирования: учебное пособие	Москва: Интернет- Университет Информационных Технологий (ИНТУИТ), 2005	ЭБС «Университетская библиотека онлайн»		
2	Хахаев И. А.	Практикум по алгоритмизации и программированию на Python: курс: учебное пособие	Москва: Национальный Открытый Университет «ИНТУИТ», 2016	ЭБС «Университетская библиотека онлайн»		
3		Прикладная информатика: журнал	Москва: Университет Синергия, 2019	ЭБС «Университетская библиотека онлайн»		
4	Ландовский В. В.	Алгоритмы обработки данных: учебное пособие	Новосибирск: Новосибирский государственный технический университет, 2018	ЭБС «Университетская библиотека онлайн»		
5	Смирнова О.В., Смирнов К.В.	Структуры данных: Учебно-методическая литература	Москва: Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта», 2018	ЭБС «Znanium»		
6	Белов В. В., Чистякова В.И.	Алгоритмы и структуры данных: Учебник	Москва: ООО "КУРС", 2023	ЭБС «Znanium»		
7	Криволапов С.Я.	Введение в анализ данных. Поиск структуры данных с применением языка Python: Учебное пособие	Москва: ООО "Научно- издательский центр ИНФРА-М", 2024	ЭБС «Znanium»		
8	Гуриков С.Р.	Основы алгоритмизации и программирования на Python: Учебное пособие	Москва: ООО "Научно- издательский центр ИНФРА-М", 2025	ЭБС «Znanium»		

5.2. Профессиональные базы данных и информационные справочные системы

ИСС "КонсультантПлюс" ИСС "Гарант" http://www.internet.garant.ru/

Национальная электронная библиотека (НЭБ) - https://rusneb.ru

УП: ozs38.03.01.06 cтр. :

5.3. Перечень программного обеспечения

Операционная система РЕД ОС

Python

Jupyter Notebook

Colab

Pandas

NumPy

Matplotlib

Seaborn

5.4. Учебно-методические материалы для обучающихся с ограниченными возможностями здоровья

При необходимости по заявлению обучающегося с ограниченными возможностями здоровья учебно-методические материалы предоставляются в формах, адаптированных к ограничениям здоровья и восприятия информации. Для лиц с нарушениями зрения: в форме аудиофайла; в печатной форме увеличенным шрифтом. Для лиц с нарушениями слуха: в форме электронного документа; в печатной форме. Для лиц с нарушениями опорно-двигательного аппарата: в форме электронного документа; в печатной форме.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Помещения для всех видов работ, предусмотренных учебным планом, укомплектованы необходимой специализированной учебной мебелью и техническими средствами обучения:

- столы, стулья;
- персональный компьютер / ноутбук (переносной);
- проектор;
- экран / интерактивная доска.

Лабораторные занятия проводятся в компьютерных классах, рабочие места в которых оборудованы необходимыми лицензионными и/или свободно распространяемыми программными средствами и выходом в Интернет, и/или в специализированных лабораториях, предусмотренных образовательной программой.

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Методические указания по освоению дисциплины представлены в Приложении 2 к рабочей программе дисциплины.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

1.1. Показатели и критерии оценивания компетенций:

ЗУН, составляющие	Показатели	Критерии	Средства	
компетенцию	оценивания	оценивания	оценивания	
ОПК-5: Способен использовать современные информационные технологии и программные средства при решении				
профессиональных задач.				
Знать: алгоритмы обработки	знает понятия алгоритм,	полнота и содержательность	Т – тест (1-5), 3 – во-	
данных	программа, переменные,	ответа	просы к зачету (1-20)	
	типы данных	умение приводить примеры		
Уметь: строить алгоритмы	строит линейные алгорит-	полнота и содержательность	ЛЗ – лабораторные	
для решения прикладных за-	мы, циклические алгоритмы	ответа	задания (задания 1.1-	
дач		умение приводить примеры	1.2)	
		умение самостоятельно нахо-		
		дить решение поставленных		
		задач		
Владеть: практическими	разрабатывает подпрограм-	полнота и содержательность	ЛЗ – лабораторные	
навыками обработки данных	мы, использует локальные и	ответа	задания (задания 1.1-	
для решения задач професси-	глобальные переменные,	умение приводить примеры	1.2)	
ональной деятельности	рекурсию	умение самостоятельно нахо-		
		дить решение поставленных		
		задач		
ОПК-6: Способен понимать пр шения задач профессиональной		информационных технологий и и	спользовать их для ре-	
Знать: основы программиро-	знает понятия объектно-	полнота и содержательность	Т – тест (6-10), 3 –	
вания	ориентированного програм-	ответа	вопросы к зачету (21-	
	мирования	умение приводить примеры	36)	
Уметь: использовать инфор-	использует среду разработ-	полнота и содержательность	ЛЗ – лабораторные	
мационные технологии для	ки, систему управления ко-	ответа	задания (задания 2.1-	
решения задач профессио-	дом	умение приводить примеры	2.2)	
нальной деятельности		умение самостоятельно нахо-		
		дить решение поставленных		
		задач		
Владеть: практическими	выполняет анализ и обра-	полнота и содержательность	ЛЗ – лабораторные	
навыками программирования	ботку данных, их визуализа-	ответа	задания (задания 2.1-	
при решении задач професси-	цию	умение приводить примеры	2.2)	
ональной деятельности		умение самостоятельно нахо-		
		дить решение поставленных		
		задач		

1.2 Шкалы оценивания:

Текущий контроль успеваемости и промежуточная аттестация осуществляется в рамках накопительной балльно-рейтинговой системы в 100-балльной шкале.

50-100 баллов (зачтено);

0-49 баллов (не зачтено).

2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Вопросы к зачету

- 1. Понятие алгоритма, программы.
- 2. Переменные.
- 3. Типы данных.
- 4. Строки.

- 5. Массивы.
- 6. Ввод и вывод.
- 7. Линейные алгоритмы.
- 8. Ветвления.
- 9. Условия.
- 10. Циклические алгоритмы.
- 11. Виды циклов.
- 12. Цикл по коллекции.
- 13. Цикл по счетчику.
- 14. Цикл с предусловием и постусловием.
- 15. Обработка массивов.
- 16. Выход из цикла.
- 17. Понятие подпрограммы.
- 18. Передача и возврат параметров.
- 19. Локальные и глобальные переменные.
- 20. Рекурсия.
- 21. Ввод и вывод данных.
- 22. Среда разработки.
- 23. Системы управления кодом.
- 24. Модули.
- 25. Списки.
- 26. Кортежи.
- 27. Словари.
- 28. Преобразование структур данных.
- 29. Срезы.
- 30. Циклическая обработка списка.
- 31. Генератор списка.
- 32. Понятие объектно-ориентированного программирования.
- 33. Класс. Объект.
- 34. Инкапсуляция, наследование и полиморфизм в Python.
- 35. Библиотека Pandas, анализ и обработка данных.
- 36. Визуализация в matplotlib и seaborn.

Зачетное задание включает два вопроса — один теоретический вопрос и одно практи-ко-ориентированное задание из числа приведенных ниже лабораторных заданий.

Критерии оценивания:

- 50-100 баллов («зачтено») изложенный материал фактически верен, наличие глубоких исчерпывающих знаний в объеме пройденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при ответе, усвоение основной и знакомство с дополнительной литературой; наличие твердых и достаточно полных знаний в объеме пройденной программы дисциплины в соответствии с целями обучения, правильные действия по применению знаний на практике, четкое изложение материала, допускаются отдельные логические и стилистические погрешности, обучающийся усвоил основную литературу, рекомендованную в рабочей программе дисциплины; наличие твердых знаний в объеме пройденного курса в соответствии с целями обучения, изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике;
- 0-49 баллов («не зачтено») ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы.

Тест

- 1. Структурирование программы в языке Python осуществляется
 - а. С помощью операторных скобок begin ... end
 - b. С помощью знаков { }
 - с. С помощью отступов
 - d. С помощью таблиц
- 2. В результате выполнения кода [x^{**} 2 for x in range(5)] будет создан:
 - а. Список квадратов чисел от 0 до 4
 - b. Кортеж
 - с. Возникнет ошибка
 - d. Функция интервала
- 3. В языке Python функция может быть передана в качестве параметра другой функции
 - а. Только в виде lambda-выражения
 - b. Да может
 - с. Нет не может
 - d. Функций в Python не существует
- 4. Циклические алгоритмы реализуются в Python с помощью конструкций
 - a. if ... elif ... else
 - b. def
 - c. define ...
 - d. for ... in ... и while ...
- 5. Библиотека Seaborn предназначена для
 - а. Обработки табличных данных
 - b. Визуализации данных
 - с. Web-разработки
 - d. Работы с системными файлами
- 6. Конструкций if ... elif ... else предназначена в Python для реализации
 - а. Циклических алгоритмов
 - b. Ветвящихся алгоритмов
 - с. Линейных алгоритмов
 - d. Аналитических алгоритмов
- 7. Выражение 'ПРИВЕТ'[::-1] выдаст
 - а. ПРИВЕТ
 - b. T
 - с. ПРИВЕ
 - d. ТЕВИРП
- 8. Введен словарь $d = \{ \text{'Ростов':'} P\Phi', \text{'Париж':'} \Phi$ ранция'}. Чтобы получить страну, где располагается Париж нужно использовать:
 - а. d['Париж']
 - b. Париж[0]
 - c. d[1]
 - d. find('Париж', d)
- 9. Библиотека Python, позволяющая эффективно обрабатывать и анализировать данные в табличной форме
 - a. MatPlotLib
 - b. SeaBorn
 - c. Math
 - d. Pandas
- 10. Рекурсия это
 - а. прием, при котором функция вызывает саму себя
 - b. специальный тип данных
 - с. вариант массива
 - d. команда вывода информации

Критерии оценивания:

Для одного обучающегося формируется вариант, содержащий 10 вопросов.

17-20 баллов – тест пройден на 85-100 %;

7-16 баллов – тест пройден на 35-84 %;

0-6 баллов – тест пройден на менее, чем 35 %.

Максимальное количество баллов за тест – 20.

Лабораторные задания

Лабораторное задание 1.1. Алгоритмы и структуры данных.

Понятие алгоритма, программы. Переменные. Типы данных. Строки. Массивы. Ввод и вывод. Применение алгоритмического мышления к решению задач.

Цель: ознакомиться с переменными, типами и структурами данных, получить умения для выполнения дальнейших лабораторных заданий, изучить приемы ввода и вывода.

Задания:

Задание выполняется в Colab или аналогичной системе

Используйте предложенный набор данных.

- 1. Откройте блокнот с примером по данной теме.
- 2. Выполните задание по алгоритму, указанному в блокноте.
- 3. Сделайте выводы.

Лабораторное задание 1.2. Линейные, ветвящиеся и циклические алгоритмы.

Линейные алгоритмы. Ветвления. Условия. Циклические алгоритмы. Виды циклов. Цикл по коллекции. Цикл по счетчику. Цикл с предусловием и постусловием. Обработка массивов. Выход из цикла.

Цель: ознакомиться с линейными, ветвящимися и циклическими алгоритмами, получить умения для выполнения дальнейших лабораторных заданий, изучить приемы применения алгоритмов для различных задач.

Задания:

Задание выполняется в Colab или аналогичной системе

Используйте предложенный набор данных.

- 1. Откройте блокнот с примером по данной теме.
- 2. Выполните задание по алгоритму, указанному в блокноте.
- 3. Сделайте выводы.

Лабораторное задание 2.1. Инструментарий разработки на языке Python.

Ввод и вывод данных. Среда разработки. Системы управления кодом. Модули. Math, NumPy.

Цель: ознакомиться с инструментами разработки программ на Python, получить умения для выполнения дальнейших лабораторных заданий, изучить приемы работы с библиотеками и средами разработки.

Задания:

Задание выполняется в Colab или аналогичной системе

Используйте предложенный набор данных.

- 1. Откройте блокнот с примером по данной теме.
- 2. Выполните задание по алгоритму, указанному в блокноте.
- 3. Сделайте выводы.

Лабораторное задание 2.2. Работа со структурами данных Python.

Списки. Кортежи. Словари. Преобразование данных. Срезы. Циклическая обработка списка. Генератор списка.

Цель: ознакомиться с изменяемыми и неизменяемыми структурами данных в языке Python, получить умения для выполнения дальнейших лабораторных заданий, изучить приемы работы со структурами данных.

Задания:

Задание выполняется в Colab или аналогичной системе

Используйте предложенный набор данных.

- 1. Откройте блокнот с примером по данной теме.
- 2. Выполните задание по алгоритму, указанному в блокноте.
- 3. Сделайте выводы.

Критерии оценивания (для каждого задания):

16-20 баллов — задание решено в полном объеме, самостоятельно выбраны верные инструментальные методы и библиотеки, составлен корректный программный код, выполнение кода произошло без ошибок и получен заданный результат, отчет оформлен верно и предоставлен на проверку в установленный срок, обучающийся верно отвечает на вопросы по заданию, демонстрирует наличие глубоких исчерпывающих / твердых и достаточно полных знаний;

9-15 баллов — задание решено в полном объеме с небольшими погрешностями, самостоятельно выбраны верные инструментальные методы и библиотеки, составлен корректный программный код, выполнение кода произошло без ошибок и получен заданный результат, отчет оформлен верно и предоставлен на проверку в установленный срок или с допустимым опозданием, обучающийся отвечает на вопросы по заданию верно, но с отдельными погрешностями и ошибками, уверенно исправленными после дополнительных вопросов;

2-8 баллов — задание решено частично, частично выбраны верные инструментальные методы и приемы решения, представлен незавершенный или содержащий некоторые ошибки программный код, отчет оформлен частично верно и предоставлен на проверку с допустимым опозданием, обучающийся отвечает на вопросы по заданию частично верно, демонстрируя некоторую неточность ответов на дополнительные и наводящие вопросы;

0-1 баллов – задание не решено или решено частично, частично выбраны необходимые инструментальные методы и приемы решения, программный код не представлен или содержит грубые ошибки, отчет не оформлен, отчет не сдан на проверку в допустимый срок, обучающийся отвечает на вопросы по заданию не верно.

Максимальное количество баллов за лабораторные задания — 80 (4 задания по 20 баллов).

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедуры оценивания включают в себя текущий контроль и промежуточную аттестацию.

Текущий контроль успеваемости проводится с использованием оценочных средств, представленных в п. 2 данного приложения. Результаты текущего контроля доводятся до сведения студентов до промежуточной аттестации.

Промежуточная аттестация проводится в форме зачета.

Зачет проводится по расписанию промежуточной аттестации. Количество вопросов в зачетном задании -2 (один теоретический вопрос и одно практико-ориентированное задание). Результаты аттестации заносятся в ведомость и зачетную книжку студента. Студенты, не прошедшие промежуточную аттестацию по графику, должны ликвидировать задолженность в установленном порядке.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Учебным планом предусмотрены лабораторные занятия.

В ходе лабораторных занятий углубляются и закрепляются знания студентов по ряду вопросов, развиваются навыки практической работы.

При подготовке к лабораторным занятиям каждый студент должен:

- изучить рекомендованную учебную литературу;
- подготовить ответы на все вопросы по изучаемой теме.

В процессе подготовки к лабораторным занятиям студенты могут воспользоваться консультациями преподавателя.

Вопросы, не рассмотренные на лабораторных занятиях, должны быть изучены студентами в ходе самостоятельной работы. Контроль самостоятельной работы студентов осуществляется в ходе занятий методом теста и выполнения лабораторных заданий. В ходе самостоятельной работы каждый студент обязан прочитать основную и по возможности дополнительную литературу по изучаемой теме, выделить непонятные термины, найти их значение в энциклопедических словарях.

Студент должен готовиться к предстоящему лабораторному занятию по всем обозначенным в рабочей программе дисциплины вопросам.

Для подготовки к занятиям, текущему контролю и промежуточной аттестации студенты могут воспользоваться электронно-библиотечными системами. Также обучающиеся могут взять на дом необходимую литературу на абонементе университетской библиотеки или воспользоваться читальными залами.